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Abstract: This paper describes a quadrilateral mesh generation algorithm ide-
ally suited for transition subdomain meshes in the context of any domain de-
composition meshing strategy. The algorithm is based on an automatic hierar-
chical region decomposition in which, in the last level, it is possible to generate
quadrilateral elements with a conventional mapping strategy. In two dimen-
sions, a subdomain is usually a triangle or a rectangle. In this algorithm, a
subdomain with two boundary curves may also be allowed. Templates impose
restrictions on the number of boundary curve segments of a subdomain to be
meshed. The proposed hierarchical template scheme eliminates these restric-
tions, requiring only an even number of boundary segments. Other algorithms
in the literature present similar characteristics. However, the implementation
of the hierarchical decomposition and its templates presented here is quite
simple compared to other approaches. Six high-level templates are considered
for a subdomain, depending on the number of boundary curves and the num-
ber of segments on each curve. Several examples demonstrate that this simple
idea may result in structured meshes of surprisingly good quality. We also
show the possibility of obtaining different meshes for a subdomain with fixed
boundary discretization by changing the corners between curves.

Keywords: template-based mesh; structured quadrilateral mesh; domain
decomposition; mapping, transition mesh

1 Introduction

This paper describes a novel hierarchical template-based meshing scheme for
generating good-quality quadrilateral meshes. This approach is ideally suited
for transition subdomain meshes in the context of structured 2D or surface
meshing strategies, such as mapping, submapping, sweeping, medial axis,
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auto-decomposition or user-assisted decomposition. One of the main draw-
backs of these meshing schemes is the constraint on the number of subdomain
boundary curve segments. For quadrilateral subdomains, the number of seg-
ments on opposite boundary curves must be equal, and, for triangular subdo-
mains, the three boundary curves must have equal number of segments. In this
environment, it is difficult to implement local mesh refinement without using
non-structured hybrid subdomain meshes because any change in the number
of segments of a boundary curve forces the propagation of this modification to
opposite subdomain curves. The proposed hierarchical template-based mesh-
ing scheme produces quad-mapping transition meshes without any constraint
on the number of boundary segments. The only requirement is that the total
number of segments must be even, which is a general rule for any quadrilateral
mesh [?, ?].

In the context of quadrilateral mesh generation, template is a pattern that
describes how a single polygon can be decomposed into quadrilaterals. In two
dimensions or in surface meshing, a single polygon is usually a triangle or a
rectangle. Many finite element meshing algorithms use templates to some de-
gree. For example, mapping techniques may be considered as simple templates.
Initially, classical structured mapping strategies [?] were proposed, defining
generalized curvilinear coordinate systems for closed, bounded and simply
connected domains on the plane or in 3D surfaces. A similar approach was
proposed in another work [?] for generated hexahedral meshes using body-
oriented coordinates defined by three-dimensional regions bounded by six
surfaces. In both works, transfinite mapping techniques were established for
curvilinear coordinate systems in arbitrary domains to approximate complex
surfaces and volumes. Haber et al. [?] and Haber and Abel [?] used transfinite
mappings based on discrete boundary curves, and applied these techniques to
two-dimensional and three-dimensional surface preprocessing programs. This
discrete form of the mapping allows representing boundary geometries gener-
ically. The basic idea of these works is to use triangular and quadrilateral
template meshes in a parametric space and map them to Cartesian space.
Similar ideas were developed to generate three-dimensional meshes [?, ?]. It is
interesting to observe that, in 1982, Cook and Oakes [?] presented examples
of quadrilateral mesh grading algorithms for gradual or rapid element density
transitions, but the algorithms were not formalized. Similar techniques were
cited by Thompson [?].

Another meshing technique that employs templates is recursive domain
subdivision using quadtree [?]. Yerry and Shephard [?] pioneered this tech-
nique, proposing templates to generate triangular and quadrilateral elements.
Other works have been published following similar ideas with some improve-
ments and modifications [?, 7, ?, ?]. In general, this mesh generation process
is implemented in three stages. Initially, the domain’s interior is filled with
a quadtree that is recursively and locally refined according to given bound-
ary refinement information. Care is taken to avoid adjacent quadtree cells
that have a difference of more than one in tree depth. Then, templates that
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depend on cell adjacency are employed to mesh the interior cells. In a final
stage, the region between the interior mesh and the boundary is also meshed
using several meshing schemes, which might employ other types of templates.
A recent work [?] describes a template scheme for meshing all quadrilateral
elements with guaranteed quality while preserving features of the boundary.
Analogous procedures are used for three-dimensional mesh generation using
an octree [?7, 7, 7, ?]. Schneiders et al. [?] presented original templates to
generate hexahedral elements in octree cells, which were improved by Ito et
al. [?].

There are many other meshing algorithms that use templates. Schnei-
ders [?] reviewed the state of the art in quadrilateral and hexahedral mesh
generation in 2000 and described many techniques that employ templates.
Templates are naturally used in association with a domain decomposition
strategy, in which a domain is decomposed into subdomains where a specific
template is chosen to generate quadrilateral elements. For example, Nowot-
tny [?] used a geometry-based optimization for selecting appropriate cuts di-
viding the domain and presented a set of meshing templates for triangular
and rectangular polygons. In a sense, the hierarchical meshing scheme pro-
posed in the present paper is a generalization of the templates presented
by Nowottny. Mller-Hannemann [?] decomposed a coarse mesh of polygons in
three-dimensional space into quadrilaterals. In these subdomains, mesh is gen-
erated with templates that satisfy prescribed local density constraints. Four
quadrilateral templates are presented that are similar to some present here.
Lizir et al. [?] proposed a template-based approach for generating quad-only
meshes from 2D digital images. The same authors used the same technique to
generate quad meshes from triangle surfaces [?]. In both works, they fill the
subdomains with triangular and quadrilateral templates. In addition, many
other approaches for 3D domain decomposition generate meshes using tem-
plates [?, 7, ?]. A commercial software for finite element analysis also employs
templates for subdomain mesh transition using quadrilateral and hexahedral
elements [?].

The mesh generation algorithm proposed in this work is also devised in
the context of a domain decomposition meshing strategy. As mentioned, in
two dimensions, a subdomain is usually a triangle or a rectangle. In this
work, a subdomain with two boundary curves may be allowed. Templates im-
pose restrictions on the number of boundary curve segments of a subdomain
to be meshed. The proposed hierarchical template scheme eliminates these
restrictions, requiring only an even number of boundary segments. The algo-
rithm introduced by Miller-Hannemann [?] presents the same characteristic.
However, our algorithm has a simpler and more direct approach than that
algorithm.

Six high-level templates are considered here for a subdomain, depending on
the number of boundary curves and the number of segments on each curve:
three templates have four curves, two have three curves, and one has two
curves. A boundary curve is given by a set of segment points (boundary nodes)
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and may include a group of geometric curves. A transition subdomain may
have four, three, or even two boundary curves. Based on the input boundary
data, the hierarchical scheme selects the target high-level template (classifi-
cation) and recursively decomposes the subdomain into regions in which only
quadrilateral templates may be adopted. The recursive decomposition results
in subregions that are meshed using the classical quad-mapping scheme. The
hierarchical recursive depth is three at most.

Although template-based quadrilateral mesh generation has already been
studied by other authors, as described above, this work presents some contri-
butions, namely:

e an automatic recursive region decomposition in which, in the last
level, it is possible to generate quadrilateral elements with a con-
ventional mapping strategy;

e the proposed template with three curves does not impose con-
straints on the number of subdivisions, such as the ones required
by the tri-mapping technique [?], for instance;

e a new alternative template for subdomains with three curves for a
particular case of curve subdivision;

e a new template for subdomains with two curves.

One of the main advantages of the proposed scheme is that it generates
topologically equivalent meshes for subdomains with the same number of
curves and boundary segments. This characteristic may be explored in volume
sweeping meshing, since the source and target surface meshes are topologically
equivalent. Another advantage is the possibility of obtaining different meshes
for a subdomain with fixed boundary discretization by changing the corners
between curves, as shown in the examples section. Finally, the implementation
of the hierarchical decomposition presented here, and its templates, is quite
simple when compared to other approaches.

2 Main Concept

Following the ideas of Haber et al. [?, 7], the input data for the proposed
quadrilateral mesh generation scheme on a subdomain is a discrete repre-
sentation of boundary curves (polylines). As mentioned, this discrete form
allows representing boundary geometries generically. This form of representa-
tion is quite simple, and may be implemented in any programming language
as a vector of real numbers which is a sequential list of boundary points
(or nodes) and the number of segments (or edges) in each boundary curve:
(T1,Y1, 215, T2, Y25 22, -y Ty Yy 2n ). As also mentioned, to generate quadrilat-
eral elements the total number of edges on the boundary must be even. A
subdomain may be composed of four, three, or two boundary curves that
do not intersect themselves. The number of boundary curves is indicated by
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Fig. 1. Templates used to decompose regions and their nomenclature.

the number of corner nodes, which are given by a set of indices to the input
boundary coordinate vector.

Figure 7?7 shows the set of templates considered in this work, which are
used to decompose a region in subregions. They consist of two templates with
four curves (T'1 and T'2), two templates with three curves (73 and 74), and
one template with two curves (T5). The letters A, B,C, and D in Figure 77
correspond to the number of edges in each boundary curve. Note that template
T0 does not decompose the region; it is used only to generate quadrilateral
elements through the conventional mapping method in which A = B and
C=D.

10 T0
10 T0 T0 T0 T0

Fig. 2. Example of hierarchical decomposition of templates to generate quadrilateral
elements.
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The prior selection (first level) of one of the templates in Figure 77 de-
pends on number of edges on each curve. If the number of edges on opposite
sides is equal, then template T0 is selected, and quadrilateral elements are
generated by the conventional mapping method. If it is not possible to use
template T0 in the first level, one of the five other templates is selected. Each
of these templates decomposes the first level subdomain into regions (second
level), and a new template is selected for each region. This process is repeated
recursively for each region until a subregion can be meshed using template
T0. Due to this recursive process, the proposed template-based quadrilateral
mesh generation can be understood as a hierarchical decomposition. The whole
scheme was devised in such a way that the hierarchical recursive depth, i.e. the
number of levels, is three at most. For example, Figure 7?7 shows a subdomain
composed by three boundary curves. In the first level, template T'3 is selected.
In the second level, three different templates are selected for each subregion
(T2, T0, and T'1). In the third and last level, template T0 is selected for all
subregions, which are the leaves in the hierarchical decomposition.

A key point in the hierarchical decomposition meshing scheme is the selec-
tion of a template to be used in a region. This selection is explained by means
of a pseudo-code, which is shown in Figure ??. Given the number of curves in
a region and their number of edges (A, B, C, and D), this code returns the
selected template. The algorithm described in Figure 7?7 is straightforward.
First, the selection is based on the number of boundary curves. Then, the
selection is based on the number of edges of each curve. The result will be a
non-valid selection if the total number of subdivision edges is not even (a null
value is returned). If the selection results in template 70, the corresponding
region is meshed (conventional mapping) and the recursive process for that
region stops. If the selected template is other than T0, the region is divided
and the pseudo-code is used to select the template for each resulting subre-
gion. The process is repeated recursively until 70 is selected for all subregions.
To obtain the final subdomain mesh, the meshes of all T0 subregion leaves
are merged.

3 Implementation Details

The equations presented by Gordon & Hall [?] for transfinite mapping of
surface patches with four and three curves are used here to compute the posi-
tion of any interior point generated by the hierarchical decomposition scheme.
Considering that the input to the algorithm is a set of edges on the boundary
curves, as described in the previous section, the discrete transfinite mapping
presented by Haber et al. [?, ?] is conveniently applied in this context. The
mapping expressions are reproduced in equation (1) for the bilinear projector
and in equation (2) for the trilinear projector. Therefore, in a more general
form, the proposed scheme can be applied to 3D surface patches. In this case,
a generated internal point is projected to the closest point on the surface.
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Function getTemplate (numCurves, A, B, C, D)
If numCurves = 2 Then

If ((A + B) mod 2) = 0 Then
Return Template T5

End If

Else If numCurves = 3 Then

If ((A+ B + C) mod 2) = 0 Then

If shape is similar to a sliver triangle Then
Return Template T4

Else
Return Template T3
End If
End If
Else If numCurves = 4 Then

If A=CAnd B = D Then
Return Template TO

Else If A = C And ((B + D) mod 2) = 0 Then
Return Template T1
Else If B = D And ((A + C) mod 2) = 0 Then

Return Template T1
If ((A + C) mod 2) = ((B + D) mod 2) Then
Return Template T2
End If
End If
Return NULL
End Function

Fig. 3. Pseudo-code to select a template based on the number of curves and their
subdivision.

F(u,v) = (1 = v)1(u) + voa(u) + (1 — u)é1 (v) + uéa(v)
—(1=u)(1 —2v)F(0,0) — (1 —u)vF(0,1)
—wwF(1,1) — u(l — v)F(1,0) (1)
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(1) €00 = wp(0) - ) - vn(© 2

A key aspect of the proposed hierarchical decomposition process of a re-
gion is defining the number of edges that will be used on the boundaries of
each subregion. The number of edges is defined based on the lengths of the
boundary curves. These lengths are computed in 3D using the given discrete
polyline geometric information on each curve. The following paragraphs detail,
for each adopted template, the decomposition process and the computation
of the number of edges on the boundaries of each resulting subregion.

Template T'1, shown in Figure ?7?(a), is applied when the number of edges
of a pair of opposite curves is equal (C' = D), and the number of edges of the
other pair of opposite curves is different (A # B). As required, the values of
A and B must satisfy the restriction [(A + B)mod2] = 0. Considering B > A,
the number of edges b is given by b = (A — B)/2. Values of uq, ua, v1, v in
parametric space, see Figure ??(al), are computed as:

ﬁu—@v— d vy = d (3)
d3, 2_d37 1_d1+d47 2_d2+d5

in which dy, ds, ds3, dg, and d5 are lengths in Cartesian space, as shown in Fig-
ure ?77?(a2). The parametric values given by equation (3) result in quadrilateral
elements of better shape quality generated in each subregion. All subregions
generated by template T1 have the final template T0, with the following dis-
tribution of boundary edges:

Uy =

Subregion 1, A x b edges;
Subregion 2, b x C' edges;
Subregion 3, A x C edges;
Subregion 4, b x C' edges.

Template T2, shown in Figure ??(b1), is used when the number of edges of
opposite curves is not equal, that is, A # B and C' # D. However, the evenness
property requires the number of edges to be [(A+ B+ C 4+ D)mod2] =0 . In
Figure ??(bl), B > A and D > C, and the number of edges b is obtained from
the expression b = Min(A — B,C — D)/2. Values of u; and v; in parametric
space, see Figure ??(bl), are computed by:

dq do
—— 4
d3 U1 d4 ( )

in which dy, da, d3 and dy are lengths in 3D space, as shown in Figure ?7(b2).
The subregions generated by template T'1 have the following distribution of
boundary edges:

U =

e Subregion 1, A x b edges, with final template T0;
e Subregion 2, b x C edges, with final template T0;
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(el) (e2)

Fig. 4. Decomposition of the proposed templates in parametric and in Cartesian
spaces.
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e Subregion 3 with two possibilities: (1) If A = (B —b) and C =
(D —b), the final template is T0; (2) If A # (B—b) or C # (D —b),
the final template is T'1, which is decomposed recursively.

Both templates T'1 and T2 have been presented by other authors [?, 7, 7,
?]. However, the templates presented here are more flexible because they may
be applied recursively. This is one of the main advantages of the proposed
meshing scheme, which turns out to be a natural way to apply templates.
This may be noticed by comparing the proposed templates with the ones of
a commercial software [?], for example, which imposes further restrictions on
curve subdivision.

Template T'3, as shown in Figure ??(cl), consists in decomposing the re-
gion into three subregions of four curves. The procedure used here is similar
to that used in trimapping [?]. However, here it is extended to use templates
in a hierarchical manner. The problem with trimapping is that it presents the
following restriction:

A+B>C+2,B+C>A+2C+A>B+2. (5)

The numbers of edges a, b, and ¢, as shown in Figure ??(cl), are achieved as
follows:

a=(A+B—-C)/2,b=(B+C—A)/2,c=(C+A-B)/2.  (6)

Input A, B, C

Qutput a, b, ¢, e, £, g
Comment: “compute # of edges on curves”
a=(A+B-C) /2

b= (B+C-24) / 2

c=(C+A-B) /2

minEdge = Min (a, b, c)

Comment: “adjust a, b, and c¢ if necessary”
If minEdge < 0 Then

coffset = 1 - minEdge;

If a £ 0 Then a = a + offset Else a = a - offset

If b £ 0 Then b = b + offset Else b = b - offset

If ¢c £ 0 Then ¢ = ¢ + offset Else ¢ = ¢ - offset
End If

Comment: “compute internal # of edges”

If a > (B - b) Then e = a Else e =B - b
If b > (C - c¢) Then £f = b Else £ =C - ¢
If ¢ > (A - a) Then g = ¢ Else g = A - a

Fig. 5. Pseudo-code to obtain the number of edges in template T'3.
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The procedure proposed here to template T3 does not necessarily conform
to equation (5). When this restriction is not satisfied, an offset correction is
applied, resulting in the number of edges given by equation (6). Figure 77
shows a pseudo-code to this procedure. Given the number of edges in each
boundary curve (A4, B, and C) of the original region, the number of edges in
each internal curve (a, b, ¢, d, e, f, and g) is obtained. Initially, the values of
a, b, and ¢ are calculated using equation (6). If the restrictions in equation (5)
are not obeyed, one of these calculated values will be equal to or smaller than
zero, and all values need to be adjusted by an offset correction. The offset is a
unit subtracted from the lower calculated value (a, b, or ¢). Then, the values
of a, b, and ¢ are adjusted with the following rule: if a value is smaller than or
equal to zero, add the offset to this value; otherwise, subtract the offset from
this value. The numbers of edges e, f, and g are obtained from the largest
number of edges in the adjacent opposite curves, as shown in Figure ??(cl)
and in the pseudo-code of Figure ?7?7. For a simple example with A = B = 2
and C' = 10, the first values obtained are a = —3, b = ¢ = 5, resulting in an
offset equal to 4; and, subsequently, resultingina =b=c=e=g¢g =1 and
f=9.

Template T4 is proposed here to be used as an alternative to template 73
when the number of edges of one curve is much smaller than the number of
edges of the other two curves. In this situation, template 7'3 may not provide
good results in some cases. In Figure ??(d1), assume that C' < A and C' < B.
One criterion that can be used for selecting T4 instead of T'3 is kC' < A and
kC < B, where k may be an integer at least greater than 2, £k > 2. This value
should be chosen according to the needs of each application. The values of
a, b, and ¢, in Figure ??(d1), initially can be set to C' (the smallest number
of edges among the input boundary curves). Note that the second subregion
must satisfy the restriction [(a + b+ ¢)mod2] = 0. When this restriction is not
satisfied, the values of a and b must be adjusted. This is done using a very
simple procedure: if A > B, a = a + 1; otherwise, b = b + a. Values of u; and
v1 in parametric space are computed similarly to template T'3, where dy, ds,
ds, and d4 are lengths obtained in Cartesian space, as shown in Figure 77(d2).
The subregions generated by template T4 are:

e Subregion 1 with two possibilities: (1) If (A — a) = (B — b), the
final template is T0; (2) If (A —a) # (B —b), the final template is
T1.

e Subregion 2, with a x b X ¢ edges, to use template 7'3.

Template T'5, shown in Figure ??(e), is used when the domain has only two
curves. A domain with two curves could be considered as a domain with three
curves, dividing the curve with the largest number of edges into two curves [?].
However, the proposed template T'5 divides each of the two boundary curves
into two further curves to form a bilinear mapping in parametric space, as
shown in Figure ??(el). Then, the region is divided into two subregions with
three curves. The number of internal edges ¢ can be calculated or reported
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by the application. A possible calculation is to take the distance d;, shown
in Figure ??(e2) in Cartesian space, and divide it by the average size of all
boundary edges. Restrictions and must be satisfied. The subregions generated
by template T'5 are:

e Subregion 1, with (B — b) X a x ¢ edges, to use template 7'3;
e Subregion 2, with (A —a) x b X ¢ edges, to use template T'3.

4 Examples

This section presents some examples of the application of the proposed quadri-
lateral mesh generation scheme in regions of simple shapes. The main objec-
tives of these examples are: (1) to show the behavior of the hierarchical decom-
position when the number of edges on curves is modified; (2) to illustrate the
impact of selecting different boundary curves for a region with fixed boundary
subdivision; and (3) to show that meshes generated in different regions with
the same number of curves and subdivisions are topologically equivalent.

(2) (b) © @

Fig. 6. Set of meshes for a square domain; example 1.

In the first two examples, shown in Figures ?? (example 1) and ??7 (ex-
ample 2), the impact of varying the number of edges of the boundary curves
on template selection and on the final mesh is studied. In the images, thicker
lines represent the boundaries of the resulting subregions. Table ?? shows the
input numbers of edges, the root template, and the branch templates used in
the examples illustrated by these figures. Figure 77 presents a set of meshes
for a square region, in which templates T'1 and T2 are used. The most com-
plex situation is found in Figure ??(d), in which all input boundary curves
have different subdivisions. In this case, a branch T'1 template is used in the
bottom-right subregion.

Example 2 is shown in Figure 9: an equilateral triangle. In this example, the
meshes shown in Figures ??(a), 9(b), and 9(h) are obtained in a similar way
as the trimapping technique [?]. However, the meshes in Figures 9(c), 9(d),
and 9(e) may only be generated using the proposed approach. The meshes
of Figures ??(f) and 9(g) could be generated by template T3 similarly to
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Fig. 7. Set of meshes for an equilateral triangular domain; example 2.

Table 1. Curve refinement and templates used in examples 1 and 2.

13

Figure A B C D Root Branch templates

tem-

plate
8(a) 4 4 4 4 70 -
8(b) 4 6 4 4 T1 -
8(c) 4 6 4 6 T2 -
8(d) 4 8 4 6 T2 T1 (bottom-right region)
9(a) 4 4 4 - T3 -
ab) 6 4 4 - T3 -
9(c) 8 4 4 - T3 T1 (bottom-right region)
9(d) 10 4 4 - T3 T1 (bottom-right region)
9(e) 10 6 4 - T3 T1 (bottom-right region)
9(f) 10 8 4 - T4 T3 (top region) and T'1 (bot-

tom region)

9(g) 10 10 4 - T4 T3 (top region)
o) 10 10 6 - T3 -

trimapping. However, template T4 is used here because it generates better
results.

Examples 3 and 4, illustrated in Figures 7?7 and 77, show a set of meshes
generated for domains with a fixed number of edges on the boundary, but
with different sets of boundary curves. The corners between boundary curves
are defined by the round marks shown in these figures, and the decomposition
of the root template in subregions is represented by the thicker lines. The
number of curves, the root template, and the branch templates are listed in
Table ??7. In order to assess the quality of the generated meshes, Table 77
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Table 2. Numbers of curves and templates used in examples 3 and 4.

Figure # Curves Root Branch templates

tem-
plate
10(a) 4 T2 T1 (top-right region)
10(b) 3 T3 T'1 (top-left region)
10(c) 3 T4 T3 (top-right region) and T1 (bottom re-
gion)
10(d) 3 T3 -
10(e) 2 T5 T3 (top-left and bottom-right regions)
10(f) 2 T5 T3 (top-left and bottom-right regions)
11(a) 3 T4 T3 (top region) and T'1 (bottom region)
11(b) 3 T3 T1 (bottom-right region)
11(c) 2 T5 2x T4 = 2 x T3 (top and bottom regions)
and 2 X T'1 (middle region)
11(d) 2 T5 2x T3 = 2xT3 (top and bottom regions)

and 2 X T'1 (middle-right region)

®

Fig. 8. Set of meshes when different boundary curves are specified for a domain,
example 3.
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3

@ (c)

Fig. 9. Set of meshes when different boundary curves are specified for a domain;
example 4.

Table 3. Mesh metrics for examples 3 and 4.

Figure # of nodes # of elements aaverage Qmax Qmin Standard De-

viation
10(a) 116 98 0.495 0.894 0.127 0.187
10(b) 119 101 0.402 0.849 0.042 0.223
10(c) 88 70 0.267 0.832 0.017 0.243
10(d) 109 91 0.637 0.955 0.101 0.208
10(e) 120 102 0.420 0.911 0.032 0.232
10(f) 130 112 0.380 0.870 0.056 0.240
11(a) 63 50 0.284 0.764 0.024 0.187
11(b) 69 56 0.256 0.860 0.002 0.231
11(c) 45 32 0.306 0.728 0.020 0.225
11(d) 68 55 0.160 0.707 0.006 0.163

lists shape quality metrics for each mesh. The distortion metric used in this
table is the one proposed by Lee and Lo [?];

a3 X Oy

p=taxu 7

aq XQQ,

in which «; is adopted as the internal angle computed for each of the four
resulting triangles in the iy, corner, sorted in descending order of magnitude,
a1 > ag > ag > ay. The shape quality metric has a valid interval between 1.0
and 0.0, with high quality elements, those close to a right rectangle, having
values close to 1.0.

The analysis of mesh results illustrated in Figures 7?7 and 7?7 are based on
the metric values summarized in Table 3. The natural number of boundary
curves of the domain shown in Figure 7?7 is four. Considering this informa-
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tion, the mesh generated by the proposed procedure is shown in Figure 77?(a).
Alternatively, this domain can be meshed considering three curves, as shown
in Figures ??(b, ¢, d) or two curves, as in Figures ??(e, f). Surprisingly, the
best result regarding element shape quality is a situation with three boundary
curves, as shown in Figure ??(d). A similar behavior is observed for the do-
main with three curves shown in Figure 77. Although the domain has clearly
three boundary curves, the best result is obtained when two boundary curves
are considered, as in Figure ?7?(c). Note also that the use of template T4, Fig-
ure ?7(a), presents better shape quality results than the use of template 7'3,
thereby demonstrating the need for an alternative template for three curve
domains. In both examples, the boundary is naturally defined with four or
three curves. However, better results are obtained with an alternative number
of curves. Defining the best choice of boundary curves for a given domain is
outside the scope of this work.

5 Conclusion

This work presented a hierarchical template-based quadrilateral meshing
scheme. Six templates were presented: three templates with four curves, two
with three curves and one with two curves. The main concept of the proposed
approach is to decompose a region into subregions, in a recursive and hier-
archical way, until achieving a subregion in which it is possible to generate
quadrilateral elements using the bilinear mapping technique. Meshes of all
subregions are merged to obtain one final mesh.

Template decomposition is based on discrete bilinear and trilinear pro-
jectors of parametric coordinates on boundary curves. Details of the main
procedures were described to help readers implement them. Some of the con-
tributions are:

e Two existing templates from the literature for a region with four
curves were improved in terms of domain decomposition;

e An existing template (trimapping technique) for a region with
three curves was extended, and a restriction was removed by
adding an offset correction;

An alternative template with three curves was proposed;

e A new template with two curves was proposed.

Some examples were presented, showing the behaviour of the proposed
meshing scheme when the number of edges of boundary curves is modified,
and when different curves are considered as input for a region. These examples
demonstrate how useful the proposed alternative template is for a region with
three boundary curves. In addition, they demonstrate that the original number
of curves of certain domains does not necessarily result in the best mesh when
applying the proposed approach. Other possibilities must be tested. Finally,
the proposed templates were used to create topologically equivalent source
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and target surface meshes in volumetric mesh generation using a sweeping
technique.
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